ABSTRACT

How do glia become toxic to neurons under neurodegenerative conditions?

Hoon Ryu, Ph.D.

Laboratory for Brain Gene Regulation and Epigenetics Brain Science Institute, Korea Institute of Science and Technology (KIST)

Boston University Alzheimer's Disease Research Center (BU ADRC) Boston University School of Medicine

Although the pathological contributions of reactive astrocytes have been implicated in Alzheimer's disease (AD), their *in vivo* functions remain elusive due to the lack of appropriate experimental models and precise molecular mechanisms. Here, we show the importance of astrocytic reactivity on the pathogenesis of AD using GiD, a newly developed animal model of reactive astrocytes, where the reactivity of astrocytes can be manipulated as mild (GiDm) or severe (GiDs). Mechanistically, excessive hydrogen peroxide (H₂O₂) originated from monoamine oxidase B in severe reactive astrocytes causes glial activation, tauopathy, neuronal death, brain atrophy, cognitive impairment and eventual death, which are significantly prevented by AAD-2004, a potent H₂O₂ scavenger. These H₂O₂⁻-induced pathological features of AD in GiDs are consistently recapitulated in a three-dimensional culture AD model, virus-infected APP/PS1 mice and the brains of patients with AD. Our study identifies H₂O₂ from severe but not mild reactive astrocytes as a key determinant of neurodegeneration in AD.

This study was published in *Nature Neuroscience* 23 (12):1-12 (2020). Authors: Chun HJ,..., Ryu H* and Lee CJ*. Original Title: Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via excessive H_2O_{2-} production.

This study was selected as 2020 National BIO TOP 5 of the Life Science Research by Korean Biomedical Research Scientists.